Mathe-Arbeit: "bester Kennwert" für Statistiken

vom 11.05.2012, 17:22 Uhr

Wir haben heute eine Klassenarbeit in Mathematik zurückerhalten, mit einer meiner Meinung nach ziemlich unfairen Bewertung meiner Aufgabe: In der Aufgabe waren ein paar Anzahlen von Kühen von Bauern eines Dorfes gelistet, es waren 9 Werte, wovon 8 Werte zwischen 10 und 25 schwankten und ein Ausreißer mit rund 120 Kühen da war.

In der Aufgabenstellung werde zuerst natürlich nach arithmetischem Mittel, Zentralwert, Standardabweichung und Co gefragt. Die letzte Frage lautete dann "Welcher dieser Werte beschreibt die "mittlere Anzahl" der Kühe pro Dauer in diesem Dorf am besten?". Wir durften uns dann einen der Werte vom Anfang der Aufgabe aussuchen: Der Durchschnitt betrug 27 Kühe, der Zentralwert 17 und der häufigste Wert 20.

Ich finde die Frage aber wirklich extrem doof gestellt: Es ist zwar nicht direkt ein "deiner Meinung nach" in die Frage integriert, mir ist aber keine Festlegung bekannt, welcher Wert eine Menge in der Stochastik im besten beschreibt. Meiner Meinung nach beschreibt der Durchschnitt trotz des "Ausreißers" die Menge der Kühe am besten, unsere Lehrerin wollte aber "Modalwert" oder Zentralwert hören und hat mir so leider die Eins in dieser Arbeit versaut. :(

Benutzeravatar

» delpiero224 » Beiträge: 1378 » Talkpoints: 4,49 » Auszeichnung für 1000 Beiträge



Der Modalwert, also der Wert, der am häufigsten vorkommt, ist nur bei großen Datenmengen aussagekräftig, ist hier also nicht so interessant. Da es aber einen Ausrutscher gibt, ist der Zentralwert, also der Wert in der Mitte, in diesem Sachzusammenhang aussagekräftiger als das arithmetische Mittel. Das arithmetische Mittel in dieser Fragestellung wäre wahrscheinlich über 30 - dazu müsste ich aber die genauen Zahlen wissen, in diesem Zusammenhang wäre das keine gute Beschreibung der Viehhaltung.

Ein Beispiel dazu: Ein kleiner Kindergarten hat Kinder von 3 bis 6 Jahren. Nehmen wir einmal an, dass 3 Kinder 3 Jahre alt sind, 3 Kinder 4 Jahre, 3 Kinder 5 Jahre und 3 Kinder 6 Jahre alt. Die Erzieherin sei 50 Jahre alt. Das Duchschnittsalter der Personen in diesem Kindergarten ist 8 Jahre. Der Zentralwert ist 5 Jahre. Der Zentralwert gibt also eine bessere Vorstellung vom Alter der Personen in dem Kindergarten wieder. Wenn es Ausrutscher gibt, ist der Zentralwert aussagekräftiger.

» anlupa » Beiträge: » Talkpoints: Gesperrt »


Ich weiß zwar nicht genau was bei euch der Zentral- oder Modalwert ist, gehe aber davon aus, dass es der Median ist. Und es ist nunmal so, dass der Median die Datenmenge am besten repräsentiert, da 50% aller Werte unter diesem und die anderen 50% oberhalb dieses Wertes liegen. Dadurch fallen Ausreißer weniger stark ins Gewicht. Wodurch wiederum eben dieser Wert die Situation am besten darstellt.

» musicality » Beiträge: 809 » Talkpoints: 1,77 » Auszeichnung für 500 Beiträge



Ähnliche Themen

Weitere interessante Themen

^